Рентген и флюорография

Людей, которые приходят в поликлиники за справками и лечением интересует вопрос: флюорография и рентген лёгких — в чём между ними разница? Почему врачи назначают то одно, то другое? И что лучше: рентген или ФЛГ? Получить ответы на эти и другие вопросы вы сможете в данной статье.

Рентген

Вильгельм Конрад Рентген – немецкий физик, открывший и изучивший в 19 веке лучи, проникающие через непрозрачные предметы. В его честь были названы эти лучи, а также единица измерения интенсивности ионизирующего излучения. Удивительные лучи наблюдали также Т. Эдисон и Никола Тесла. Работая с ними, они или их сотрудники получали даже ожоги. В те времена ещё не все знали о пользе и вреде новых лучей.

Рентгеновские лучи были открыты случайно, в ходе экспериментов с катодными лучами, как называли тогда свободные электроны. В стеклянной трубке, из которой был откачан воздух, нагревали нить накаливания из различных материалов и при помощи дополнительных электродов изучали проходящий ток и действие лучей на разные материалы. Случайно было замечено почернение фотопластинок, находящихся рядом. Рентген уделил время их изучению и понял, почему они засвечены.

Оказалось, что попадание катодных лучей на анод выбивает из него какие-то новые лучи, обладающие совершенно удивительными свойствами. Трубка была специально сконструирована для изучения новых лучей и Рентген приступил к изучению их свойств. В том числе и оптических: поглощение, преломление и отражение для различных веществ и материалов. Итогом оказалось вручение Рентгену Нобелевской премии по физике в 1901 году.

Так как учёные забавлялись фотографиями, а лучше сказать, рентгенограммами своих рук и других частей тела, на которых лучше всего были видны кости, то на эти снимки очень быстро обратили внимания врачи. Врачам эти изображения говорили гораздо больше, чем не знакомым с анатомией физикам. Врачи быстро оценили диагностические возможности снимков. Немалый вклад в это внёс сам Рентген, который, как почти все немцы, был очень практичным человеком и один из первых его докладов по новой теме был сделан именно в обществе медиков.

Тем временем физики продолжали изучать новые явления и установили природу рентгеновских лучей. Оказалось, что рентген – это обычный свет, но только с гораздо более короткой длиной волны. После видимого света идёт ультрафиолетовый свет, с более короткой длиной волны, затем идёт рентгеновское излучение, наконец, гамма-излучение, возникающее при естественном или искусственном делении и распаде атомных ядер. Чем короче длина волны, тем больше энергия излучения и тем выше его способность проникать сквозь вещество.

Современная рентгеновская трубка – это металлический прибор с вольфрамовым анодом, охлаждаемым водой для защиты от расплавления, работающий от источника высокого напряжения. Это необходимо для достаточного ускорения электронов, чтобы при их последующем торможении на аноде получить кванты с требуемой энергией. По мере роста напряжения на трубке, укорачивается длина волны рентгена и возрастает энергия излучения. Чем больше ток луча – тем больше её интенсивность и мощность.

Особенностью рентгеновских и гамма-лучей оказалось то, что они способны ионизировать вещество, разбивать его молекулы на части из-за своей большой энергии. Иногда это хорошо, иногда – плохо. Всё живое на Земле оказалось слишком чувствительным по отношению к этой новой форме энергии. Разумное использование рентгеновских лучей приносит большую пользу. С помощью рентгена просвечивают и изучают живые ткани и убивают клетки опасных опухолей. Однако бесконтрольное облучение рентгеном может быть причиной тяжёлых и смертельных заболеваний: незаживающих ожогов, опухолей, лучевой болезни и лейкемии. Рентген является разновидностью радиации и современные нормы в дозах облучения сильно ужесточены по сравнению с началом двадцатого века, когда рентген только начинал использоваться в медицине.

Рентгенография и рентгеноскопия

Первые медицинские приборы для рентгеновских обследований были несовершенными. Больного ставили или укладывали, над ним располагали трубку, а сразу за телом находился картонный экран, покрытый сульфидом цинка. Трубку включали и врач рассматривал внутренние органы пациента. Видно было не очень хорошо и не очень много: кости и контрастные ткани изображались зелёным светом на чёрном экране. Но зато в реальном времени, как говорят теперь. Это назвали рентгеноскопией (наблюдением в лучах рентгена).

Лучевая нагрузка на пациента была слишком велика, давала большой процент осложнений. Это начали замечать и стали регистрировать изображение на больших фотопластинках. Пациенты стали получать меньшую дозу, меньше стало осложнений, но терялось преимущество реального времени. Однако, у врача было больше времени для изучения снимков. Такой метод исследования был назван рентгенографией (записью в лучах рентгена). Отличие от предыдущего – в способе регистрации.

Тем временем в практику работы рентгенологов стали входить рентгеноконтрастные вещества. Это увеличило возможности для получения некоторых данных. Пациенту давали вещество, ждали, пока оно распространится по организму, и затем наблюдали или делали снимок. Например, больному давали взвесь сульфата бария – сметаноподобное безвкусное “лекарство” и ждали, когда оно достигнет нужного места в его ЖКТ. Рентгенограмма получалась очень чёткой.

Затем пациента помещали под аппарат и врач видел всю форму, расположение и перистальтику обследуемого органа, отличия от нормы собственными глазами, без всякой операции. Можно было наблюдать и делать снимки. Это было большим преимуществом для диагностики, по сравнению с традиционными методами. Со временем методы рентгенографии и рентгеноскопии улучшались, была снижена доза радиации на обследованиях и повысилась резкость рентгенограмм.

Флюорография

Флюорографией называют обычное фотографирование флюоресцентного изображения на рентгеноскопическом экране. Зачем это делается, если можно просто поставить в аппарат кассету с рентгеновской фотопластинкой? Это делается для производительности массового обследования. Есть много болезней, например, туберкулёз, которые требовали в свое время усиленной борьбы с ними. Да и теперь не стоит расслабляться. Выявить туберкулёз легких обычными методами было очень непросто – он неплохо маскируется в начальной стадии под другие болезни лёгких.

Процедура традиционной рентгенографии была и остаётся длительной. Хотя это наиболее точный метод обследования, он занимает много времени на проявку и сушку каждой отдельной пластинки, стоимость расходных материалов также высока, например снимок пневмонии делается в двух проекциях. Флюорография оказалась выгодной тем, что съёмку можно было вести на обычную фотокамеру с плёнкой. Ведь лучи света сфокусировать значительно проще, чем рентгеновские лучи, а прямая засветка фотопластин рентгеном таких возможностей не даёт из-за близкого к единице показателя преломления. Рентген отличается от флюорографии также непосредственной засветкой фотопластинки, её нельзя масштабировать. Таким образом, оказалось возможным быстро пропустить большое число людей и получить сведение о состоянии их лёгких.

Кроме того, врач мог сделав снимок в одной проекции, сделать новый снимок в другой проекции или при другом положении органов. Для этого он давал обследуемому указания принять нужное положение, вдохнуть, выдохнуть, наблюдал картину в реальном времени и фиксировал важные моменты, делая снимки и записи в карточке. Если флюорография показывала патологию, то такого больного направляли на рентген для дальнейшего уточнения диагноза.

Флюорография отличается от рентгена так же, как репортажная фотосъёмка отличается от художественной. Она быстрее, дешевле, и качеством хуже. Кроме того, из-за потерь при преобразовании в свет на экране, приходилось увеличивать мощность рентгеновской трубки и облучать обследуемого повышенной дозой. Так было в традиционной, классической флюорографии. Поэтому периодичность обследования была раз в два года. Кроме того, детям и беременным женщинам (фактически содержащим в себе детей в наиболее уязвимом состоянии) флюорография была противопоказана, им делали только рентген, который производится при меньшей дозе облучения.

Современная флюорография и рентген

Благодаря многим чудесам физики и электроники, а также развитию микропроцессорных технологий, в флюорографии сегодня стало возможным невозможное. Замена фотокамеры и рентгеновских фотопластинок на специальную матрицу, подобную той, которая применяется в цифровых фотоаппаратах, даёт возможность в сто и более раз снизить лучевую нагрузку на пациента. Такие матрицы имеют максимум чувствительности в рентгеновском диапазоне электромагнитных волн.

При лучевой дозе в сотни раз меньшей, чем в обычном аппарате, врач может в динамике обследовать пациента и делать снимки и даже видео внутренних органов. Обследование без переоблучения можно проводить чаще, и назначать его более широкому кругу пациентов, поскольку число противопоказаний снижается. Такая технология стирает прежнюю разницу между рентгеноскопией, рентгенографией и флюорографией. Вообще, правильно было бы назвать её флюорографией, так как в матрице для обнаружения лучей используется используется флюоресценция.

Рентгеновская томография или КТ

КТ – это компьютерная томография. Это наиболее информативный способ рентгеновского обследования. Он опирается на атласы, полученные хирургами и патологоанатомами ещё очень давно. Это может показаться жутким, но для составления этих атласов замороженные трупы нарезали тонкими ломтиками, как колбасу, при помощи специальных пил, и тщательно описывали наблюдаемую картину. На основе этих наблюдений составлялись другие анатомические атласы, а врачи получали ценную информацию, как о нормальных тканях, так и о патологиях.

Со временем этим атласам нашлось ещё более полезное применение. Рентгеновские лучи применили для сканирования плоских областей тканей. Принцип работы состоит в том, что обследуемого помещают во вращающееся кольцо, в котором установлена трубка и один или несколько датчиков рентгеновского излучения. При вращении кольца луч проходит по разным направлениям и даёт разные величины поглощения, обнаруживаемые датчиком. Существует математическая модель для обработки полученных данных, которая используется для восстановления истинной картины среза. Программное обеспечение томографа как раз этим и занимается. Делая снимки нескольких срезов подряд, томограф получает объёмную модель внутренних органов и тканей, которая даёт врачам значительно больше данных, чем простой, плоский рентгеновский снимок.

Сложность и точность изготовления механики томографа, его электрические и лучевые характеристики находятся на пределе современных технических возможностей. Сейчас производится уже четвёртое поколение томографов.

Компьютерный томограф – наиболее сложный медицинский аппарат, иметь который многим медицинским учреждениям пока не по карману. Но он даёт настолько много данных, что широко внедряется во всех развитых странах, несмотря на цену. Обследования платные, недешёвые, но в общем, по карману подавляющему числу пациентов. Лучевая нагрузка на пациента при обследовании выше, чем при флюорографии, поэтому могут быть противопоказания.

Вот примерная сравнительная характеристика лучевой дозы при различных воздействиях и медицинских исследованиях с применением рентгеновских лучей:

  • Смертельная доза излучения для человека (100%): 7000 мЗв;
  • Природный, естественный фон: 0.001…0.002 мЗв;
  • Максимальная разовая доза облучения: 50 мЗв;
  • Классическая рентгеноскопия: 10…30 мЗв (уже не применяется);
  • Классическая рентгенография (фотопластинки): 0.1…0.4 мЗв;
  • Классическая флюорография (фотопленка): 0.15…0.25 мЗв;
  • Цифровая флюорография и рентген: 0.002…0.07 мЗв;
  • Компьютерная томография: 2.5…10 мЗв.

Из этих данных видно, что из всех видов обследования томография дает наиболее значительную лучевую нагрузку на организм, например, при обследовании грудной клетки. Наименьшую нагрузку дает цифровая флюорография. Максимальная допустимая годовая норма для человека 150 мЗв, если он нуждается в обследованиях. Это доза облучения при трёх обследованиях.

Пациентам не стоит беспокоиться по поводу того вида обследования, которое назначает врач. У врачей существует принцип, это главный принцип всей медицины: “не навреди”. Поэтому грамотный и добросовестный врач никогда не будет вынуждать пациента проходить ненадлежащее обследование и не выпишет пациенту направления на такое обследование, как бы тот не просил, если он (врач) не видит в этом необходимости. Врачу виднее, какая процедура безопаснее.

Противопоказаниями для КТ могут оказаться следующие случаи:

• Сахарный диабет;

• Недостаточность почек;

• Тяжелое общее состояние;

• Миелома или подозрение на неё;

• Беременность;

• Аллергия на рентгеноконтрастные препараты.

Хотя это не совсем относится к теме, но существует ещё один вид томографии (“записи тела” греч.), который называется МРТ или магнито-резонансная томография. На самом деле физическое явление, на котором оно основано, называется ядерный магнитный резонанс, ЯМР. Так что следовало бы назвать метод ЯМР-томографией. Но чтобы не довести до паники пациентов, слово “ядерный” было убрано из названия метода, по маркетинговым соображениям. Это выглядит смешно, но самая большая ирония тут состоит в том, что этот метод не использует ни малейшего лучевого воздействия на пациента, он никакого отношения к радиации не имеет. Для выполнения обследования в приборе используется лишь сильное магнитное поле, безопасное для живых тканей, а датчики прибора определяют магнитные моменты атомов водорода в тканях пациента и по этим данным рассчитывается состояние внутренних органов. Противопоказаниями к МРТ могут быть металлические имплантаты и инородные тела из металла, осколки, дробь, пули. Магнитное поле вызовет в них ток, который нагреет их и может привести к ожогам соседних тканей.

Подписаться
Уведомление о
guest

0 комментариев
Inline Feedbacks
View all comments